Indian Statistical Institute Mid-Semestral Examination Topology I - MMath I

Max Marks: 40

Time: 180 minutes.

[3+3+4]

Answer all questions. You may use Theorems stated/proved in the class after correctly stating them. You may use results not discussed in the class only after proving them.

- (1) Let \mathbb{R}_d denote the real line with the discrete topology. Show that the dictionary order topology on the set $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}$. Compare this topology with the standard topology on \mathbb{R}^2 . [8+2]
- (2) Let τ be the topology generated by the following collection of subsets of \mathbb{R} : (i) open intervals (a, b) and (ii) sets of the form (a, b) K where $K = \{1/n\}_{n \ge 1}$. Then,
 - (a) Is (\mathbb{R}, τ) connected?
 - (b) Is [0,1] compact as a subspace of (\mathbb{R},τ) ?
 - (c) Is (\mathbb{R}, τ) path connected?
- (3) Let X be a metric space with metric d. Show that $d: X \times X \longrightarrow \mathbb{R}$ is continuous. Let X' denote a space having the same underlying set as X. If $d: X' \times X' \longrightarrow \mathbb{R}$ is continuous, then show that the topology of X' is finer than the topology of X. [5+5]
- (4) Let $\pi_1 : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ be projection to the first factor. Let A be the subspace of $\mathbb{R} \times \mathbb{R}$ consisting of points (x, y) for which either $x \ge 0$ or y = 0, or both. Let $q : A \longrightarrow \mathbb{R}$ be the restriction of π_1 . Show that q is a quotient map. Is q an open map? Is q a closed map? [3+1+1]
- (5) Show that there does not exist a continuous bijective map $f: S^1 \longrightarrow S^2$. [5]